268 research outputs found

    A centralized feedback control model for resource management in wireless networks

    Get PDF
    In a wireless environment, guaranteeing QoS is challenging because applications at multiple devices share the same limited radio bandwidth. In this paper we introduce and study a resource management model for centralized wireless networks, using feedback control theory. Before applying in practice, the proposed model is evaluated using the well-known 20-sim dynamic system simulator. The experimental results show that flexible and efficient resource allocation can be achieved for a variety of system parameters and WLAN scenarios; however, care should be taken in setting the control parameters and coefficients

    Anisotropic Susceptibility of La_2-xSr_xCoO_4 related to the Spin States of Cobalt

    Full text link
    We present a study of the magnetic susceptibility of La_2-xSr_xCoO_4 single crystals in a doping range 0.3<=x<=0.8. Our data shows a pronounced magnetic anisotropy for all compounds. This anisotropy is in agreement with a low-spin ground state (S=0) of Co^3+ for x>=0.4 and a high-spin ground state (S=3/2) of Co^2+. We compare our data with a crystal-field model calculation assuming local moments and find a good description of the magnetic behavior for x>=0.5. This includes the pronounced kinks observed in the inverse magnetic susceptibility, which result from the anisotropy and low-energy excited states of Co^2+ and are not related to magnetic ordering or temperature-dependent spin-state transitions

    Efficient CSL Model Checking Using Stratification

    Get PDF
    For continuous-time Markov chains, the model-checking problem with respect to continuous-time stochastic logic (CSL) has been introduced and shown to be decidable by Aziz, Sanwal, Singhal and Brayton in 1996. Their proof can be turned into an approximation algorithm with worse than exponential complexity. In 2000, Baier, Haverkort, Hermanns and Katoen presented an efficient polynomial-time approximation algorithm for the sublogic in which only binary until is allowed. In this paper, we propose such an efficient polynomial-time approximation algorithm for full CSL. The key to our method is the notion of stratified CTMCs with respect to the CSL property to be checked. On a stratified CTMC, the probability to satisfy a CSL path formula can be approximated by a transient analysis in polynomial time (using uniformization). We present a measure-preserving, linear-time and -space transformation of any CTMC into an equivalent, stratified one. This makes the present work the centerpiece of a broadly applicable full CSL model checker. Recently, the decision algorithm by Aziz et al. was shown to work only for stratified CTMCs. As an additional contribution, our measure-preserving transformation can be used to ensure the decidability for general CTMCs.Comment: 18 pages, preprint for LMCS. An extended abstract appeared in ICALP 201

    Rate-Based Transition Systems for Stochastic Process Calculi

    Get PDF
    A variant of Rate Transition Systems (RTS), proposed by Klin and Sassone, is introduced and used as the basic model for defining stochastic behaviour of processes. The transition relation used in our variant associates to each process, for each action, the set of possible futures paired with a measure indicating their rates. We show how RTS can be used for providing the operational semantics of stochastic extensions of classical formalisms, namely CSP and CCS. We also show that our semantics for stochastic CCS guarantees associativity of parallel composition. Similarly, in contrast with the original definition by Priami, we argue that a semantics for stochastic π-calculus can be provided that guarantees associativity of parallel composition

    Mott versus Slater-type metal-insulator transition in Mn-substituted Sr3Ru2O7

    Full text link
    We present a temperature-dependent x-ray absorption (XAS) and resonant elastic x-ray scattering (REXS) study of the metal-insulator transition (MIT) in Sr3(Ru1-xMnx)2O7. The XAS results reveal that the MIT drives the onset of local antiferromagnetic correlations around the Mn impurities, a precursor of the long-range antiferromagnetism detected by REXS at T_order<T_MIT. This establishes that the MIT is of the Mott-type (electronic correlations) as opposed to Slater-type (magnetic order). While this behavior is induced by Mn impurities, the (1/4,1/4,0) order exists for a wide range of Mn concentrations, and points to an inherent instability of the parent compound.Comment: In press. A high-resolution version can be found at http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/MnSRO_REXS.pd

    Role of Orbitals in the Physics of Correlated Electron Systems

    Full text link
    Rich properties of systems with strongly correlated electrons, such as transition metal oxides, is largely connected with an interplay of different degrees of freedom in them: charge, spin, orbital ones, as well as crystal lattice. Specific and often very important role is played by orbital degrees of freedom. In this comment I will shortly summarize the main concepts and discuss some of the well-known manifestations of orbital degrees of freedom, but will mostly concentrate on a recent development in this field.Comment: To be published in "Comments on Solid State Physics", part of "Physica Scripta

    Bounded Model Checking of GSMP Models of Stochastic Real-Time Systems

    Get PDF
    Model checking is a popular algorithmic verification technique for checking temporal requirements of mathematical models of systems. In this paper, we consider the problem of verifying bounded reachability properties of stochastic real-time systems modeled as generalized semi-Markov processes (GSMP). While GSMPs is a rich model for stochastic systems widely used in performance evaluation, existing model checking algorithms are applicable only to subclasses such as discrete-time or continuous-time Markov chains. The main contribution of the paper is an algorithm to compute the probability that a given GSMP satisfies a property of the form “can the system reach a target before time T within k discrete events, while staying within a set of safe states”. For this, we show that the probability density function for the remaining firing times of different events in a GSMP after k discrete events can be effectively partitioned into finitely many regions and represented by exponentials and polynomials. We report on illustrative examples and their analysis using our techniques
    • …
    corecore